Files
rockchip-kernel/drivers/crypto/allwinner/sun8i-ce/sun8i-ce-cipher.c
Eric Biggers 674f368a95 crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.

However, no one actually checks for this flag, which makes it pointless.

Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc.  But there are probably
many more in arch/*/crypto/ and drivers/crypto/.

Some algorithms can even set this flag when the key is the correct
length.  For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.

So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly.  But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.

So just remove this flag.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-09 11:30:53 +08:00

438 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ce-cipher.c - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6/R40 SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"
static int sun8i_ce_cipher_need_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct scatterlist *sg;
if (sg_nents(areq->src) > MAX_SG || sg_nents(areq->dst) > MAX_SG)
return true;
if (areq->cryptlen < crypto_skcipher_ivsize(tfm))
return true;
if (areq->cryptlen == 0 || areq->cryptlen % 16)
return true;
sg = areq->src;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
sg = areq->dst;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
return false;
}
static int sun8i_ce_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
#endif
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir & CE_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int sun8i_ce_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
struct sun8i_ce_flow *chan;
struct ce_task *cet;
struct scatterlist *sg;
unsigned int todo, len, offset, ivsize;
dma_addr_t addr_iv = 0, addr_key = 0;
void *backup_iv = NULL;
u32 common, sym;
int flow, i;
int nr_sgs = 0;
int nr_sgd = 0;
int err = 0;
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
op->keylen);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt->stat_req++;
#endif
flow = rctx->flow;
chan = &ce->chanlist[flow];
cet = chan->tl;
memset(cet, 0, sizeof(struct ce_task));
cet->t_id = cpu_to_le32(flow);
common = ce->variant->alg_cipher[algt->ce_algo_id];
common |= rctx->op_dir | CE_COMM_INT;
cet->t_common_ctl = cpu_to_le32(common);
/* CTS and recent CE (H6) need length in bytes, in word otherwise */
if (ce->variant->has_t_dlen_in_bytes)
cet->t_dlen = cpu_to_le32(areq->cryptlen);
else
cet->t_dlen = cpu_to_le32(areq->cryptlen / 4);
sym = ce->variant->op_mode[algt->ce_blockmode];
len = op->keylen;
switch (len) {
case 128 / 8:
sym |= CE_AES_128BITS;
break;
case 192 / 8:
sym |= CE_AES_192BITS;
break;
case 256 / 8:
sym |= CE_AES_256BITS;
break;
}
cet->t_sym_ctl = cpu_to_le32(sym);
cet->t_asym_ctl = 0;
chan->op_mode = ce->variant->op_mode[algt->ce_blockmode];
chan->op_dir = rctx->op_dir;
chan->method = ce->variant->alg_cipher[algt->ce_algo_id];
chan->keylen = op->keylen;
addr_key = dma_map_single(ce->dev, op->key, op->keylen, DMA_TO_DEVICE);
cet->t_key = cpu_to_le32(addr_key);
if (dma_mapping_error(ce->dev, addr_key)) {
dev_err(ce->dev, "Cannot DMA MAP KEY\n");
err = -EFAULT;
goto theend;
}
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
chan->ivlen = ivsize;
chan->bounce_iv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
if (!chan->bounce_iv) {
err = -ENOMEM;
goto theend_key;
}
if (rctx->op_dir & CE_DECRYPTION) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend_key;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
memcpy(chan->bounce_iv, areq->iv, ivsize);
addr_iv = dma_map_single(ce->dev, chan->bounce_iv, chan->ivlen,
DMA_TO_DEVICE);
cet->t_iv = cpu_to_le32(addr_iv);
if (dma_mapping_error(ce->dev, addr_iv)) {
dev_err(ce->dev, "Cannot DMA MAP IV\n");
err = -ENOMEM;
goto theend_iv;
}
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = dma_map_sg(ce->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd <= 0 || nr_sgd > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd);
err = -EINVAL;
goto theend_sgs;
}
}
len = areq->cryptlen;
for_each_sg(areq->src, sg, nr_sgs, i) {
cet->t_src[i].addr = cpu_to_le32(sg_dma_address(sg));
todo = min(len, sg_dma_len(sg));
cet->t_src[i].len = cpu_to_le32(todo / 4);
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_src[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
len = areq->cryptlen;
for_each_sg(areq->dst, sg, nr_sgd, i) {
cet->t_dst[i].addr = cpu_to_le32(sg_dma_address(sg));
todo = min(len, sg_dma_len(sg));
cet->t_dst[i].len = cpu_to_le32(todo / 4);
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_dst[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
chan->timeout = areq->cryptlen;
err = sun8i_ce_run_task(ce, flow, crypto_tfm_alg_name(areq->base.tfm));
theend_sgs:
if (areq->src == areq->dst) {
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
if (nr_sgs > 0)
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(ce->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
theend_iv:
if (areq->iv && ivsize > 0) {
if (addr_iv)
dma_unmap_single(ce->dev, addr_iv, chan->ivlen,
DMA_TO_DEVICE);
offset = areq->cryptlen - ivsize;
if (rctx->op_dir & CE_DECRYPTION) {
memcpy(areq->iv, backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
kfree(chan->bounce_iv);
}
theend_key:
dma_unmap_single(ce->dev, addr_key, op->keylen, DMA_TO_DEVICE);
theend:
return err;
}
static int sun8i_ce_handle_cipher_request(struct crypto_engine *engine, void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = sun8i_ce_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int sun8i_ce_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_DECRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_ENCRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_cipher_init(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun8i_ce_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
int err;
memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
op->ce = algt->ce;
sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
dev_info(op->ce->dev, "Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&sktfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(&op->fallback_tfm->base)));
op->enginectx.op.do_one_request = sun8i_ce_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
err = pm_runtime_get_sync(op->ce->dev);
if (err < 0)
goto error_pm;
return 0;
error_pm:
crypto_free_sync_skcipher(op->fallback_tfm);
return err;
}
void sun8i_ce_cipher_exit(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
pm_runtime_put_sync_suspend(op->ce->dev);
}
int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
switch (keylen) {
case 128 / 8:
break;
case 192 / 8:
break;
case 256 / 8:
break;
default:
dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
int err;
err = verify_skcipher_des3_key(tfm, key);
if (err)
return err;
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}